

The Ultra-Violet Band of Ammonia, and Its Occurrence in the Solar Spectrum

A. Fowler and C. C. L. Gregory

Phil. Trans. R. Soc. Lond. A 1919 218, 351-372

doi: 10.1098/rsta.1919.0006

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

351

VI. The Ultra-Violet Band of Ammonia, and its Occurrence in the Solar Spectrum.

By A. Fowler, F.R.S., Professor of Astrophysics, and C. C. L. Gregory, B.A., Research Student, Imperial College, South Kensington.

Received December 15, 1917,—Read January 24, 1918.

PLATE 2.

Introductory.

A QUESTION of great interest in connection with the solar spectrum is that of the origin of the thousands of unidentified faint lines which were catalogued by ROWLAND in his "Preliminary Table of Solar Spectrum Wave-lengths." Some of these lines may possibly be identical with faint lines in metallic spectra which have not yet been completely tabulated, but in view of the presence of bands of cyanogen, carbon and hydrocarbon, the possibility of the correspondence of most of them with band spectra of other substances should not be overlooked.

As a contribution to this inquiry, the present investigation was undertaken primarily in order to determine whether Group P in the ultra-violet region of the solar spectrum might not be mainly due to the presence of ammonia in the absorbing atmosphere of the sun. Ammonia was already known to give a remarkable band in this region, having its position of maximum intensity near λ 3360, but it had not been investigated in sufficient detail to permit of an adequate comparison with the solar tables. Photographs have accordingly been taken with spectrographs of high resolving power for the purpose of this comparison, and, as will appear from the details which follow, it has been established that the ammonia band is certainly represented in the solar spectrum, and accounts for a considerable number of faint lines for which no other origins have been suggested.

In view of the unusual appearance of the band, an attempt has also been made to elucidate the chief features of its structure.

Previous Observations.

The characteristic ultra-violet band of ammonia, about λ 3360, appears to have been first described by Eder, who observed it in the flame of ammonia burning in VOL. CCXVIII.—A 566. 3 A [Published June 5, 1919.

oxygen.* Other bands in the ultra-violet which were attributed to ammonia by EDER were afterwards found to be identical with Deslandres' third positive group of bands of nitrogen. New determinations of the positions of the ammonia bands in the visible spectrum were also made by EDER, but it is not necessary to consider these for the present investigation. In the case of the ultra-violet band, the thirtyfour wave-lengths tabulated by Eder evidently refer to unresolved groups of band lines, and only serve for identification when instruments of small resolving power are employed.

More recently, the band has been described and illustrated by Lewis, as it appears in the spectra of vacuum tubes containing mixtures of nitrogen and hydrogen. occurrence was observed with these gases in any proportion, but not in the case of either gas alone. As obtained in this way, the band was complicated by superposed bands of nitrogen, and higher resolution than that employed was considered necessary to effect the separation satisfactorily.

The band in question has been noted occasionally in various experiments carried on at the Imperial College during several years. It has been observed in the flame of imperfectly dried cyanogen, in the spectra of vacuum tubes, and with enclosed arcs under reduced pressure, as well as in the ammonia flame itself. In all cases the band appeared under circumstances in which its presence could be attributed to combined nitrogen and hydrogen, but the spectroscopic evidence does not exclude the possibility of some combination other than ammonia. In the course of the present investigation it has further been found that the brighter parts of the band sometimes occur feebly in the spectrum of the copper arc, and even in that of the ordinary carbon arc in air.

Experimental Procedure.

A preliminary investigation was undertaken to find a source that would give the band sufficiently isolated, and at the same time bright enough to be photographed with high dispersion. Vacuum tube methods proved unsatisfactory on account of the superposition of bands of nitrogen. The purest band was obtained from an ammonia flame fed with oxygen. An ordinary blowpipe was found to be a convenient arrangement, ammonia being passed through the outer tube, and a stream of oxygen The apparatus employed is illustrated in fig. 1. through the inner one. of specific gravity 0.880 contained in the flask A was heated by a Bunsen flame, but not sufficiently to cause the liquid to boil. The vessel B was introduced as a means of condensing most of the water vapour, which otherwise condensed in the tubes of the blowpipe and extinguished the flame. The mercury gauge at C provided a convenient means of measuring the pressure, which was maintained at about 10 cm. of mercury. Oxygen was supplied from a cylinder of the compressed gas.

^{* &#}x27;Denkschr. Wien Akad.,' vol. 60, p. 1 (1893).

^{† &#}x27;Astrophys. Jour.,' vol. 40, p. 154 (1914).

flame produced in this way could be kept fairly steady, and had a small, but intensely bright, central core of a yellow colour, which was surrounded by a paler The flame was pointed in the direction of the collimator of the spectrograph, and an image of the bright central core was focussed on the slit by a quartz lens. Photographs were first taken with a small quartz spectrograph giving a dispersion of about 60A per millimetre at λ 3360, and with a quartz Littrow instrument giving a dispersion in the same region of 7A per millimetre.

In view of the need for the highest attainable resolution of the central parts of the band, an attempt was made to photograph the spectrum of the flame in the 3rd order of a 10-foot concave grating, in which the dispersion is 1.85A per millimetre. An exposure of 12 hours, however, yielded only a feeble trace of the band, and it was

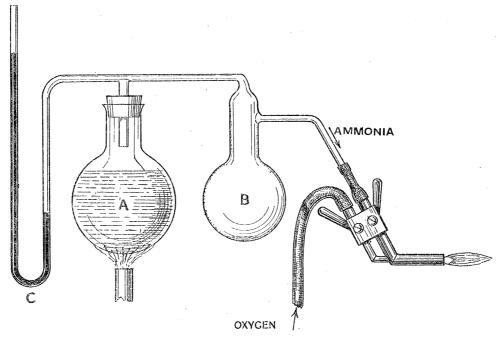


Fig. 1. Apparatus employed for ammonia flame.

evident that very much longer exposures would be necessary to give satisfactory photographs for measurement. Difficulties were anticipated in maintaining steady instrumental conditions, as the regular mounting is still detained in Russia, and only a temporary arrangement of the grating was available.

Advantage was therefore taken of the possibility of producing the band in the electric arc, which had previously been noted in the course of experiments made for other purposes. In the first arrangement tried the arc was enclosed in a glass globe provided with side tubes for the admission of the electrodes, and with a quartz window through which the arc could be observed, as in a previous investigation on the spectrum of magnesium.* It was found, however, that the quartz window became obscured by the condensation of water-vapour, and it was therefore replaced

^{* &#}x27;Phil. Trans.,' A, vol. 209, p. 449 (1909).

by a metal disc having a small aperture through which the light of the arc could pass to the spectrograph. A constant stream of ammonia, which was drawn off by a water pump, was caused to flow through the apparatus. The arc was on a 200-volt circuit, and the current used was 1.8 amperes. The electrodes were of copper.

The grating was mounted so as to give a normal spectrum, and precautions were taken to avoid mechanical displacements. The temperature of the laboratory was also kept as constant as possible during the exposures, which were of about 60 minutes' duration. An internal shutter, detached from the other parts of the spectrograph, was arranged next the plate to allow of two comparison spectra being photographed, one before and one after the ammonia spectrum.

A photograph of the copper arc in air, which was taken to facilitate the elimination of lines introduced by the electrodes, showed that the copper employed contained impurities of nickel and silver. In the case of very strong lines, "ghosts" were also present, and there were a few lines belonging to the second and fourth order spectra; these are marked by double dots in fig. V., Plate 2.

The ammonia band occurs incidentally in an excellent photograph of the magnesium arc under reduced pressure, taken in 1913 by Mr. W. Jevons, in the 4th order of the 10-foot grating; the band is here somewhat confused by nitrogen, but many of the ammonia lines can be quite certainly identified, and the high resolution has been of special value in connection with very close groups near the extreme ends of the band.

General Description of the Band.

The general features of the ammonia band will be best gathered from the photographs reproduced in Plate 2. With low dispersion, as will be seen from fig. I., the band resembles a double line having components of unequal intensity, but there are indications of banded structure on both sides in photographs which have received sufficient exposure. With somewhat higher dispersion, as in fig. II., the real structure of the band becomes more evident; it shows a closer resemblance to the ordinary type of band, such as those found in nitrogen, with the exception that the component lines fade off in both directions from the apparent head.

In fig. III., taken with the still higher dispersion of the quartz Littrow spectrograph, many of the band lines are resolved into groups of three, which cannot properly be called triplets on account of the variable spacing. The central maximum about 3360, however, remains imperfectly resolved. With the highest resolution employed—that of the 3rd order grating—additional groups of three are separated, and the central maximum is seen to consist of a great number of closely crowded lines (figs. IV. and V.). The secondary central maximum about 3371, which corresponds to the weaker component of the doublet which represents the band with low dispersion, is also resolved into a large number of component lines. It will be observed that while the central maximum degrades in both directions, the secondary maximum degrades only towards the red.

BAND OF AMMONIA, AND ITS OCCURRENCE IN THE SOLAR SPECTRUM.

In the arc, the central and secondary maxima are more fully developed than in the flame, in the sense that the band lines extend to greater distances from the two That the majority of the additional lines are really due to ammonia, and have not been introduced from other possible sources in the arc, is sufficiently proved by the series investigation, which shows that many of them are associated with the lines which appear in the flame. This greater development of the central parts of the band in the arc is accompanied by a weakening of the groups of three in the vicinity of the maxima, and a relative intensification of those further away.

Similar modifications have also been noted in the case of vacuum tube spectra when discharges of different intensity have been employed. No special experiments have been made in this connection, but in some photographs of the spectrum of nitrogen where ammonia appears as an impurity, it has been observed that the groups of three near the central maxima are developed relatively strongly by feeble discharges, while strong discharges enhance the groups away from the maxima. Increased intensity of discharge thus appears to produce the same change of spectrum as the increase of temperature in passing from the flame to the arc.

Estimates of the intensities of the lines in both flame and arc have accordingly been included in the general list (Table V.), but the comparison of the two sources in the region of the central maximum is incomplete on account of the smaller resolution in the photographs of the flame spectrum.

The wave-lengths of the lines were determined in the usual manner by interpolation with respect to lines of iron, as given by Burns. Lines of nickel originating in the poles employed for the arc spectrum, for which wave-lengths are also given by Burns, served for the detection of small displacements of the reference spectra, and to indicate the corrections to be applied. Most of the lines could be measured on the grating plates of the arc spectrum, but some were obscured by lines due to the poles, and their positions were necessarily determined from the quartz Littrow photographs of the flame spectrum. It is hoped that in most cases the wave-lengths are accurate to within 0.01A.

Details of the wave-lengths and intensities are included in Table V.

Structure of the Band.

The Groups of Three.—A considerable amount of regularity in the structure of the ammonia band is obvious by mere inspection of the photographs. especially the case with regard to the groups of three, which extend for more than 70A on each side of the central maximum. There are three series on the less refrangible side which coalesce towards the red, and three on the more refrangible side which coalesce towards the violet. To facilitate discussion, those on the less refrangible side have been designated α , β , γ , and those on the more refrangible side δ , ϵ , ξ , in order of increasing refrangibility in the groups of three in each case.

Data for the consideration of the regularity in these series are collected in Tables I. and II., the first referring to α , β , γ , and the second to δ , ϵ , ζ . The wave-

Table I.—The Series α , β , γ .

	α series.				β series.				γ series.		
λ, Ι.Α.	ν, vac.	d_1 .	d_2 .	λ, Ι.Α.	ν, vac.	d_1 .	d_2 .	λ, Ι.Α.	ν, vac.	d_1 .	d_2 .
$3450 \cdot 36$	28,974 · 34	00.00		3450.36	28,974 · 34	20.22					
46.99	29,002 · 67	28.33	- 3	46.99	29,002 · 67	28.33	-2				
43.66*	030.72	28.05	- 3	43.65*	030.80	28.13	-3				
40.37*	058 · 49	27.77	0	40.35*	058.65	27.85	1	3440 · 33	29,058 · 82		
37·08 *	086 · 30	27.81	1	37·05*	086.56	27.91	1	36.99	087.05	28.23	1
33.78	$114 \cdot 25$	27.95	1	33.74	114.59	28.03	2	33.65	115.35	28:30	1
30.48	$142 \cdot 25$	28.00	3	30.41	142.84	28.25	$\frac{1}{2}$	30.30	143.78	28.43	2
27 · 15	170.57	28 · 32		$27 \cdot 07$	$171 \cdot 24$	28 · 40	4	26.93	$\begin{array}{ c c c c }\hline 172.44 \\ \end{array}$	28.66	3
		28.45	1			28.80				28.97	
23.81	199.02	28.86	4	23.69	200.04	29 · 12	3	23.53	201.41	29 · 20	2
20.43	$227 \cdot 88$	29.00	1	20.28	$229\cdot 16$	29 · 17	1	20.11	230.61	29.52	3
17 · 04	$256 \cdot 88$	29 · 13	1	16.87	$258 \cdot 33$	29.49	3	16.66	260 · 13	29.84	3
13.64	286.01	29 · 37	2	13.43	$287 \cdot 82$	29.89	4.	13.18	289 · 97	30.22	4
$10 \cdot 22$	$315 \cdot 38$	29.60	2	09.95	$317 \cdot 71$	30.28	4.	09.66	320 · 19	30.47	3
06.78	$344 \cdot 98$		3	06 · 43	$347\cdot 99$	30.44	2	06 · 12	350.66	30.88	4
3403 · 31	$374 \cdot 90$	29.92	3	3402 · 90	$378 \cdot 43$		3	3402.54	381.54		3
3399.81	$405\cdot14$	30.24	2	3399 · 34	$409 \cdot 21$	30.78	3	3398 · 93	412.74	31.20	5
96.30	435.53	30.39	2	95.75	440 · 30	31.09	4	95 · 27	444 · 46	31.72	2
$92\cdot 78$	466.07	30.54	3	$92 \cdot 12$	471.80	31.50	3	91.58	476.39	31.93	7
89 · 23	$496 \cdot 92$	30.85	- 1	88.46	503.63	31.83	4	87.84	509.03	32.64	2
85.70	527.68	30.76	- 1	84.76	535.88	32.25	3	84.07	541.90	32.87	8
82 · 19	558 32	30.64	- 2	81.04	568.38	32.50	6	80.22	575.55	33.65	8
$78 \cdot 71$	588.76	30 · 44		77.26	601 · 47	33.09	13	76.29	609.98	34.43	16
		29.63				34.40	10	70 29		$35 \cdot 99$	10
75.33	618.39	27.58	- 21	73.34?	$635\cdot87$			12.19	049.81		
72.19 ?	645.97										

^{*} Unresolved; separations assumed.

BAND OF AMMONIA, AND ITS OCCURRENCE IN THE SOLAR SPECTRUM.

Table II.—The Series δ , ϵ , ζ .

	δ series.			ε series.				ζ series.			
λ, Ι.Α.	ν, vac.	d_1 .	d_2 .	λ, Ι.Α.	ν, vac.	d_1 .	d_2 .	λ, Ι.Α.	ν, vac.	d_1 .	d_2 .
3358.04 %	29,970.85		Name of State of Stat		maken harman mengapan disadi Juliah serang mengapan disada disadi serang mengapan disada disadi serang mengapan disada disadi serang mengapan disada disadi serang mengapan disadi sera					AMP DO THE SECOND STREET	
53.63	810.04	39 · 19	29	3350.85	29,834 · 77	00 50			-		
49.55	846.35	36.31	13	47.62	863.56	28.79	- 20	3346 · 42	29,874 · 26		
$45 \cdot 62$	881.41	35.06	11	44 · 17	894 · 36	30.80	- 4	43.21	902.94	28.68	- 13
41.82	915 · 40	33.99	7	40.68	925.59	31.23	- 1	39.86	932.94	30.00	- 2
38.10	948.73	33:33	7	37 · 19	956 · 89	31.30	1	36.49	963 · 17	30.23	- 2
34 · 47	29,981 · 32	32 59	5	33.72	29,988.07	31.18	1	33.11	29,993.56	30.39	1
30:90	30,013 · 46	32 · 14	6	30 · 27	30,019 · 13	31.06	4	29.75	30,023 · 82	30.26	1
27 · 40	045 · 03	31.57	7	26.87	049.81	30.68	5	26 · 41	053.97	30 · 15	4
$23 \cdot 98$	075 · 94	30.91	6	23.53	080.01	30.20	5	23 · 12	083.74	29.77	5
20.63	106 · 28	30.34	8	20.25	109.73	29.72	6	19.89	113.00	29.26	6
$17 \cdot 37$	135 · 86	29.58	6	17.04	138.86	29.13	6	16.73	141 · 67	28.67	5
14:18	164.86	29.00	8	13.90	167 · 41	28.55	8	13.63	169.87	28.20	8
11.09	193.02	28 · 16	9	10.85	195 · 20	27.79	9	10.62	197 · 30	27 · 43	8
08 · 10	220.31	27 · 29	9	07.90	222 · 13	26.93	9	07 70	223 · 95	26.65	8
$05 \cdot 21$	246 · 73	26.42	9	05.05	248 · 20	26.07	9	04.87	249.84	25.89	10
3302 · 42	$272 \cdot 28$	25.55	12	3302 · 30	$273 \cdot 38$	25.18	11	3302 • 15	274.75	24.91	10
3299 · 76	296 · 68	24.40	11	3299 · 67	$297 \cdot 51$	24.13	11	$3299 \cdot 54$	298.71	23.96	11
97 · 23	$319 \cdot 94$	23.26	11	97 · 16	320.58	23.07	13	97.05	321.59	22.88	13
$94 \cdot 82$	$342 \cdot 11$	22.17	15	94.79	$342 \cdot 39$	21.81	14	94.70	$343 \cdot 21$	21.62	14
92.58*	362·7 8	20.67	15	92.57*	$362 \cdot 85$	20.46	13	92.51	363.40	20.19	12
90.50*	381.95	19·17 17·83	13	90 · 49*	$382 \cdot 04$	19.19	15	90 · 45	382.41	19.01	
88.57	399.78		18	88.57	$399 \cdot 78$	16.00	17				To a proposition of the last
86.84	415.78	16.00		86.84	415.78	16.00					

^{*} Unresolved; separations assumed.

length on the international scale (λ , I.A.), the wave number in vacuo (ν), and the first and second differences (d_1 and d_2) are shown for each series. The figures in the

second decimal place in ν and d_1 are entitled to but little weight, but they have been included for the more consistent determination of d_2 , which is given in tenths. observed positions of some of the unresolved $\alpha\beta$ and $\delta\epsilon$ pairs are replaced by estimated positions of the components, in order that the course of the series may be more completely traced.

When due allowance is made for irregularities in the second differences, which are very sensitive to small errors in the wave-lengths, it is clear that the series as a whole cannot be satisfactorily represented by the usual approximate formula $\nu = a + b$ Such a formula represents a series in which the distances between successive lines (d_1) are in arithmetical progression, so that the second differences (d_2) would be constant, and not one of the series approximates closely to this condition.

The actual wave-numbers of the members of the different series could only be effectively plotted on a very large scale, but the peculiarities of the series can be shown better in some respects by curves which have d_1 for ordinates, and successive integral values of m for abscisse, the initial value of m being chosen arbitrarily. Such curves are shown in fig. 2, and it will be seen that they depart widely from the linear form implied by the above-mentioned formula. The curves also fail to show any symmetry in the arrangement of the groups of series on the two sides of the central maximum, such as might have been expected from the general appearance of the spectrum.

Considering the series α, β, γ , it will be seen that they begin with coincident, or nearly coincident, faint lines on the red side, and that the distance from line to line at first diminishes slightly and then increases. In β and γ the subsequent increase is continuous, so far as the series can be identified, and if the later lines have been correctly assigned, no other members in the immediate neighbourhood are to be expected. In the α series, the distance d_1 passes through a maximum value, as in the case of the main series of λ 3883 cyanogen which has recently been further discussed by Birge.* The α curve, however, differs from the cyanogen curves in having a double curvature, and while the greatest value of d_1 occurs among the weaker lines near the end of the series in cyanogen, it occurs among the brighter members in The later portion of the α curve is rather steep, and the identification of the next member of the series, which is involved in the secondary central maximum, is consequently difficult; the line λ 3372'19 (ν 29645'97), however, fits fairly well on the continued curve, and if this really belongs to the series it would probably be the last member.

The series δ , ϵ , $\hat{\zeta}$, resemble the first three in commencing with faint unresolved lines, which are far removed from the central maximum, but the d_1-m curves show no change of curvature near the beginning of the series. In the δ series the distance between successive lines increases continuously as the central maximum is approached, but in ϵ and ξ it passes through a maximum as in α .

^{* &#}x27;Astrophys. Jour.,' vol. 46, p. 85 (September, 1917).

BIRGE has found a hyperbolic relation between d_1 and m in the case of cyanogen, but it does not seem that this is applicable to the series under consideration, with the possible exception of ϵ and ξ . While it is possible to give approximate formulæ of the usual type for these series over a large part of their ranges, there seems little hope at present of finding any accurate formula which can be adapted to all of them. One can hardly resist the conclusion that there is some connection between the groups of three and the central maxima, but no numerical relation has yet been established.

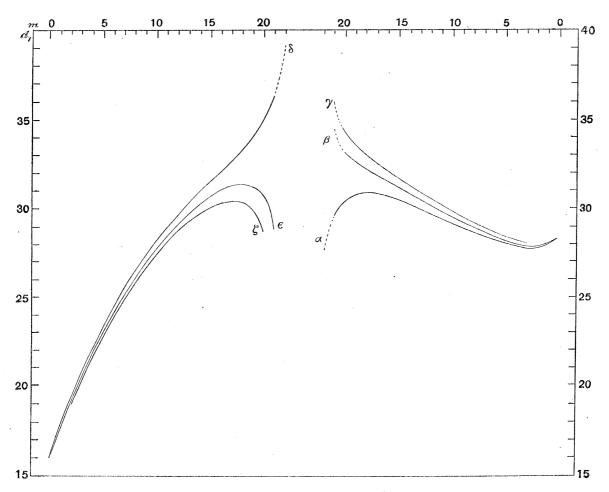


Fig. 2. Curves representing the varying distances between successive lines in the series α to γ . (The dotted portions of the curves are somewhat doubtful.)

It should be noted that in addition to the main series formed from the groups of three, there are other fragmentary series of fainter lines having intervals between successive lines of the same order of magnitude as those of the main series. These are indicated in the general table by α' , α'' , and δ' .

The Central Maxima.—The series which constitute the central and secondary maxima, so far as they have been identified, do not appear to present any unusual VOL. CCXVIII.—A.

3 B

features. In each case there are several superposed series, and some of the lines, which are probably unresolved composites, have to be assigned to two or more series. The probable series belonging to the secondary maximum have been designated a_1 , a_2 , a_3 , and a_4 ; those on the red side of the chief maximum b_1 and b_2 ; and those on the more refrangible side of the chief maximum c_1 , c_2 , and c_3 . There is some uncertainty as to the c series, as alternative arrangements of the lines appear to be consistent with series relationships.

The lines belonging to the various series are indicated in the general table, but a clearer idea of their character may be obtained from fig. 3, where the series are plotted to scale. The complete spectrum is first shown, with lines of lengths proportional to the intensities, and below these are drawn the separate series. It will be seen that a large proportion of the band lines fall into the nine series, and it is quite probable that all of them could be assigned to series if it were possible to employ still greater

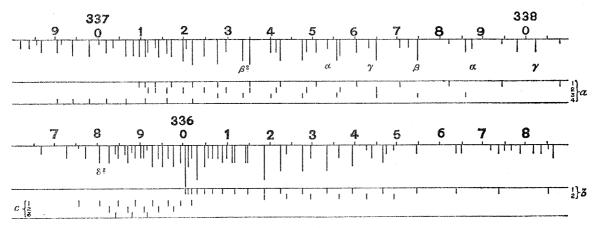


Fig. 3. Resolution of the central and secondary maxima into series.

resolving power. It will suffice to give numerical data for b_1 as a further indication of the characteristics of the series involved in the central maximum. These are shown in Table III.

The series is closely represented by the formula—

$$\nu = 29755 \cdot 176 - 0.6935m + 0.03327m^2 - 0.008326m^3.$$

where m has values ranging from 3 to 21. The greatest deviation in wave-number is 0.41, corresponding to a difference of 0.045A between the observed and calculated values. The differences between the observed and calculated wave-numbers are shown in the last column of the table, and it will be seen that they are sufficiently systematic to indicate the imperfection of the formula. There would be no difficulty in calculating such formulæ for the other series, but it is not clear that they would serve any immediately useful purpose.

Table III.—Series b_1 of the Central Maximum.

BAND OF AMMONIA, AND ITS OCCURRENCE IN THE SOLAR SPECTRUM.

λ, Ι.Α.	ν, vac.	d_1 .	d_2 .	O – C.†
3368.53	2967 8 ·18			0.00*
$67 \cdot 38$	88.32	10.14	$1\cdot 2$	+0.31
$66 \cdot 36$	97 · 31	8.99	1.0	+0.41
$65\cdot 46$	29705 · 26	7 · 95	0.9	+0.35
$64 \cdot 66$	$12 \cdot 32$	7.06	0.8	+0.22
$63\cdot 95$	18.60	6 · 28	0.7	+0.11
$63 \cdot 32$	24 · 16	5.56	0.6	0.00*
$62 \cdot 76$	29.11	4 · 95	0.2	-0.03
$62\cdot 26$	33.53	4 · 42	0.7	+0.04
61.84	37 · 25	3.72	0.5	-0.01
$61 \cdot 47$	40.52	3 · 27	0.5	+0.03
61 · 16	$43\cdot 27$	$2\cdot75$	0.5	+0.03
60.90	$45\cdot 56$	$2\cdot 29$	0.3	0.00*
60.68	$47 \cdot 51$	1.95	0.2	+0.02
60.48	49.28	1.77	0.3	+0.18
60.31	50.78	1.50	0.4	+0.37
60 · 19	51.84	1.06	0.3	+0.34
60.10	$52\cdot 64$. 0.80	0.3	+0.24
60.04	53 · 17	0.53		0.00*

^{*} Used in calculation of constants.

Comparison with the Solar Spectrum.

Details of the comparison with the solar spectrum are included in the general catalogue of ammonia band lines given in Table V. To facilitate the comparison, the wave-lengths of the ammonia lines have been corrected to the scale of ROWLAND by the addition of 0.14A, as shown in the fifth column. The entries under "sun" are taken directly from Rowland's table, and in the densest region of the central maximum, extending from 3363.5 to 3358.0, the solar lines have been tabulated in

 $[\]dagger$ O – C is expressed in wave-number.

full. A direct comparison of the two spectra in the neighbourhood of the central maximum is given in fig. 5, Plate 1, where the ammonia spectrum is reproduced as a negative in order to represent its appearance in absorption.

The comparison is complicated by the approximate coincidences of many of the ammonia lines with lines of metallic origin in the solar spectrum, or with unidentified lines which have intensities too great to allow of their being assigned to ammonia alone. As Rowland's limit of resolution appears to be about 0.04A, ammonia lines may evidently be masked in this way by solar lines showing considerable differences in Direct evidence of the presence of all the ammonia lines in the sun, such as would be afforded by identity of wave-lengths throughout, is therefore not to be expected.

There is also some uncertainty as to the completeness of Rowland's list of wavelengths, and as to the uniformity of his estimates of intensity. In this connection, a photograph of the solar spectrum in the HIGGS' collection of the Royal Astronomical Society has been to some extent utilised as a general check on Rowland in the region of the ammonia band. While the tabulated intensities on the whole were closely confirmed, there are several lines for which Rowland's estimates appear to need Attention is drawn to some of these in the column of remarks in Table V. As regards the wave-lengths, the relation between the international scale and the scale of Rowland is by no means simple. Comparison of the solar lines with the positions on the international scale given for the iron and nickel lines by Burns shows that whilst the average difference in the region of the ammonia band is about 0.14A, there is no consistent agreement among the different lines. Deviations from the mean in a selected region frequently amount to nearly 0.01A, and there are occasional variations of 0.02A and upwards. These irregularities are not necessarily due wholly to errors of measurement, but may also be caused by differences in the effective level at which the various lines are produced in the solar atmosphere. It would seem, however, that if due regard be paid to intensities, coincidences within 0.02A may not be without significance.

Notwithstanding the difficulties affecting the comparison, there is abundant evidence that the ammonia band is present in the solar spectrum. convincing proof is perhaps afforded by the strongest part of the central maximum, extending from 3360 45 to 3360 08 (Rowland's scale). As will be seen from fig. V., Plate 2, and from Table V., there is a complete correspondence of the solar and laboratory spectra as regards this group, except that the line 3360'45 may be slightly reinforced in the sun by a line of nickel.* This agreement is emphasised by the presence of a background of dark continuous spectrum which is sharply bounded in each of the two spectra by the outer two of the five lines involved. There is a similar dark ground covering the adjacent group 3360'82 to 3360'63, which is also clearly common to the two spectra.

^{*} A nickel line in this position is given by ROWLAND, but not by EXNER and HASCHEK.

The coincidences in the case of the central maximum as a whole are scarcely less The majority of the solar lines in this region in fact appear to be due to ammonia, as will be seen from the table, where the solar lines from 3363'4 to 3358'0 are tabulated in full in order to bring out this feature. In this small region there are 47 solar lines, at an average distance apart of 0.117A, and 37 ammonia band lines, at an average distance of 0.149A. Thirty-four of the ammonia lines are either represented directly by reasonably appropriate lines in Rowland's table, or fall upon solar lines of recognised or probable metallic origins. The absence of one of the remaining three lines is satisfactorily accounted for by its low intensity. of the outstanding lines 3361.61 and 3359.89, the solar line corresponding to the first appears to be masked by dark ground extending between the adjacent solar lines, while the second is probably included in the nebulous line 3359'936. The coincidences are clearly too numerous and too systematic to be considered accidental.* Confirmative evidence of their reality is afforded by the identity of narrow bright interspaces in the two spectra, especially those at 3361.0, 3360.9, 3360.5, 3360.0, 3359.7, and 3359.5, which will be clearly seen on reference to the photographs, these appear to be produced by patches of continuous background which are common to the two spectra. discussion of the central maximum may thus be considered to establish the presence of ammonia in the sun beyond all doubt.

Analysis of the secondary maximum, occupying the region 3371 to 3378, leads to a similar conclusion, and there can be no doubt that the majority of the coincidences of lines of ammonia with faint solar lines in this part of the spectrum also have a real significance.

As regards the groups of three, forming the series α to ζ , there is also a close general agreement, and the few irregularities may well be caused by imperfect estimates of the wave-lengths and intensities in the two spectra, or by the approximate superposition of lines of other substances. If it were not for interference by metallic lines in the case of the sun, a good test would be provided by the series investigations. Supposing the coincidences to be genuine, the wave-lengths of the solar lines should show the series relations with the same order of accuracy as those of the ammonia lines themselves, and the intensities of the lines should be consistent with the series This test cannot be completely applied to any one of the six series, on account of near coincidences with metallic lines, but it may be worth while to take the chief lines of the δ series as an illustration. The facts with regard to these are collected in Table IV.

It will be observed that while three of the metallic lines (3341'967, 3320'783,

^{*} In order to get a rough idea of the proportion of coincidences which might be merely accidental, the 37 ammonia wave-lengths in the region 3363.5 to 3358.0 were compared with the 47 solar lines from 3563.5 to 3558.0. The total number of approximate coincidences was 14, as compared with 34 in the true region, and of these, 5 were with lines assigned to metals. There was no systematic agreement of intensities in this case.

Table IV.—Evidence for δ Series in the Solar Spectrum.

	Ammoni	a.		Sun.						
Intensity in arc.	λ (Rowland).	d_1 .	d_2 .	Origin.	Intensity.	λ.	d_1 .	d_2 .		
4	3349·69 45·76	3·93 3·80	13		00	3349·695 45·761	$3 \cdot 934$ $3 \cdot 794$	140		
4 4	41·96 38·24	$3 \cdot 72$	08	Ti	4 0	$41 \cdot 967$ $38 \cdot 247$	3.720	074 086		
4	34.61	3.63	06		0	34.613	3·634 3·557	077		
5	31.04	3.57 3.50	07		1N	31.056	3.523	034		
5 , 5	$oxed{27.54} \ 24.12$	3.42	08	Ni	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$27 \cdot 533$ $24 \cdot 129$	3 · 404	119 058		
4	20.77	$3 \cdot 35$ $3 \cdot 26$	09	Mn, Fe	2	20.783	3·346 3·269	077		
3	$\begin{array}{c c} 17.51 \\ \hline 14.32 \end{array}$	3 · 19	07	Mn	0	$17 \cdot 514$ $14 \cdot 334$	3 · 180	0 8 9 084		
3	11.23	3.09	10	17111	0	11.238	3.096	097		
3	08.24	$2 \cdot 99$ $2 \cdot 89$	10		oN	$08 \cdot 239$	$2 \cdot 999$ $2 \cdot 885$	114		
2	05 · 35				000	$05 \cdot 354$				

3314:334) produce no appreciable disturbance of the first and second differences, some disturbance is caused by the unidentified line 3331.056, and by the nickel line 3327.533. If, however, the former be assumed to include a line shorter in wavelength by only 0.016A, and the latter to include a line of wave-length greater by 0.010A, the series connection would be shown as accurately by the solar lines as by The probable composite character of 3331'056 is in fact those of ammonia.* suggested by its nebulous appearance, and by its intensity being too great to allow of its being assigned wholly to ammonia. The agreement in the intensities is also satisfactory on the whole. The series investigation, so far as it goes, thus confirms the identification of some of the solar lines with band lines of ammonia. A general consideration of the intensities of the representatives of the α to ζ series in the solar spectrum appears to indicate a closer agreement with the arc than with the flame spectrum, the lines in the neighbourhood of the central maximum being relatively

^{*} The second differences 077, 034, 119, 058 would then become 061, 076, 083, 068.

365

This is in accordance with the fact that all the brighter lines enfeebled in each case. composing the central and secondary maxima as seen in the arc, some of which do not occur in the flame, are represented in the solar spectrum.

The outcome of the comparison is to show that of the 260 band lines of ammonia in the region λ 3450 to λ 3286, there are about 140 which correspond with previously unidentified faint lines in the solar spectrum. About 100 of the remaining lines are obscured by lines for which metallic origins have been found, or fall upon lines which are too strong in the sun to be attributed entirely to ammonia, and the few which fail to appear in the sun are all of low intensity.

It may be that additional solar lines are identical with lines composing the bands of ammonia which appear in the visible spectrum, but there are at present no experimental data for effective comparison.

Description of Table V.

The first five columns of the table give details of the ammonia band lines, showing the series to which they have been assigned, the intensities in the flame and arc, and the wave-lengths on the international and Rowland scales. The following three columns show the wave-lengths, intensities, and origins of solar lines occupying about the same positions as the ammonia lines, as given by Rowland. Between λ 3363.5 and λ 3358.0 all the solar lines are tabulated, in order to show the large proportion due to ammonia in the region of the central maximum of the ammonia band. In the column of remarks, the following references have been adopted to avoid repetition.

- (1) Solar line probably not wholly due to ammonia, as indicated by excessive intensity.
- (2) Intensity of solar line probably over-estimated by Rowland, as inferred from a Higgs' photograph.
- (3) Very close ammonia lines, which are only vaguely resolved in the 3rd order of the 10-foot grating.

It should be noted that the resolving power in the case of the flame was less than that in the case of the arc spectrum.

Table V.—Catalogue of Ammonia Band Lines, with Solar Comparisons.

		Ammo	onia.			Sun.			
Series.	Inten	sity.	Wave	-length.	λ Rowland.	Inten-	Origin.	Remarks.	
Sorres.	Flame.	Arc.	I.A.	Rowland.		sity.	Origin.		
α, β α, β α, β		0	3450 · 36	3450.50	3450 · 469	5	Fe		
α, β		$\frac{1}{1}$	$46.99 \\ 43.65$	$47 \cdot 13$ $43 \cdot 79$	$egin{array}{c c} 47 \cdot 154 & \\ 43 \cdot 791 & \\ \end{array}$	$egin{array}{c} \mathbf{00N} \\ 5d \ ? \end{array}$	Co		
α, β	٠. ر	$\frac{1}{2}$	40.36	40.50	٦		00,		
γ	0	0	40.33	40.47	} 40.505	on			
α, β	1	3	37.06	37 · 20	37 · 190	3	Fe		
γ	,]	0 -	36.99	37.13	37 · 116	000N			
$\stackrel{lpha}{eta}$	1	$\frac{2}{2}$	$33.78 \\ 33.74$	33·92 33·88	33.905	0N			
γ	,]	1	33.65	33.79	J				
ά	ا أ	2	30.48	30.62	and the second			Probable faint solar lin	
0	2		90 47	90 77	90 545	A O TAT		on edge of Zr 30.671.	
β		$\frac{2}{1}$	30.41	30·55 30·44	$30.545 \\ 30.428$	00N 00			
$_{lpha}^{\gamma}$		$\overset{1}{2}$	$27 \cdot 15$	$27 \cdot 29$	$27 \cdot 263$	3	Fe		
$\ddot{oldsymbol{eta}}$	2	2	27.07		$[27 \cdot 220]$	00		Solar line from Higgs.	
γ		1	$26 \cdot 93$	27.07	$27 \cdot 046$	0000		(0)	
α		$\frac{2}{2}$	23.81	23.95	$23 \cdot 972$	$^{ m ON}_{7}$	Ni	(2).	
β	3	$rac{2}{2}$	23.69 23.53	$23.83 \\ 23.67$	$23 \cdot 848 \ 23 \cdot 667$	OON	7.17		
$\gamma \atop \alpha$	اع م	3	20.43	20.57	20.575	0		(2).	
β	3	3	20.28	20.42	20 · 417	00			
γ	2	3	20.11	20.25	20.240	00			
$\stackrel{lpha}{eta}$	4	$\frac{3}{3}$	$\begin{array}{ c c }\hline 17.04\\ 16.87\end{array}$	$\begin{array}{c} 17 \cdot 18 \\ 17 \cdot 01 \end{array}$	$\begin{array}{c} 17\cdot198 \\ 17\cdot001 \end{array}$	00			
γ	3	$\frac{3}{3}$	16.66	16.80	16.808	0			
α		4	$13 \cdot 64$	13.78	13.782	0			
$oldsymbol{eta}$	$\frac{4}{4}$	4	13.43	13.57	13.597	2	Ni	Not Ni in ammonia arc	
γ	3	$\frac{3}{4}$	$13 \cdot 18 \\ 10 \cdot 22$	$13 \cdot 32 \\ 10 \cdot 36$	$\begin{array}{c} 13 \cdot 275 \\ 10 \cdot 386 \end{array}$	5d ?	${ m Fe} \ Z{ m r}$	Ammonia may be in cluded in solar lines	
$\stackrel{lpha}{eta}$	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	4	09.95	10.09	10.080	00	2.11) Citated in Solar inner	
γ	3	$\hat{3}$	09.66	09.80	$09 \cdot 803$	0		(2).	
$\gamma \alpha'$	00		09 · 20	$09 \cdot 34$	$09 \cdot 346$	2	Fe		
α	$\frac{3}{2}$	4	06.78	06.57	06.570	5d ?	Fe Fe		
β	3 3	$\frac{4}{3}$	$06 \cdot 43 \\ 06 \cdot 12$	$06.57 \\ 06.26$	$egin{array}{c} 06\cdot572 \ 06\cdot254 \end{array}$	00	T.G		
$_{lpha^{\prime}}^{\gamma}$	00		05.43	05.57					
α	4	4	03.31	03.45	$03 \cdot 478$	2	Fe, Ti		
β	4	4	02.54	03.04	03.033	0			
$_{lpha^{\prime\prime}}^{\gamma}$	$\begin{vmatrix} 4\\00 \end{vmatrix}$	4	$02.54 \\ 02.21$	$02.68 \\ 02.35$	$\begin{array}{c c}02\cdot685\\02\cdot352\end{array}$	000			
α'	00		01.66	01.80	01.778	0000N			
α	5	4.	3399.81	$3399 \cdot 95$	$3399 \cdot 942$	0N			
β	5	4	99.34	99.48	99.489	3	Fe		
$\alpha^{\prime\prime}$	4	4	98.93 98.43	$99.07 \\ 98.57$	$99.059 \\ 98.551$	0000N			
α'	00		97.86	98.00	90 99T	000014			
α	6	4	96.30	96.44	$96 \cdot 437$	O			
β	6	4	$95 \cdot 75$	95.89	$95 \cdot 882$	0			

Table V.—Catalogue of Ammonia Band Lines, with Solar Comparisons (continued).

BAND OF AMMONIA, AND ITS OCCURRENCE IN THE SOLAR SPECTRUM.

		Ammo	onia.			Sun.		
Series.	Inter	nsity.	Wave	-length.	λ	Inten-	Origin.	Remarks.
Series.	Flame.	Arc.	I.A.	ROWLAND.	ROWLAND.	sity.	Origin.	
γ α''	4 00	4	3395·27 94·64	3395·41 94·78	3395·408 94·746	00N 3	Fe	
α' α	00 6	4	$93 \cdot 99$ $92 \cdot 78$	$94 \cdot 13 \\ 92 \cdot 92$	92.926	0	Ti	Not given as Ti by Kilby.
$eta \ eta \ lpha'$	6 5	4	$92 \cdot 12 \\ 91 \cdot 58$	$92 \cdot 26 \\ 91 \cdot 72$	$92 \cdot 259 \ 91 \cdot 726$	0		IIIIIII.
α	0 6 6	0 5 5	$ \begin{array}{c c} 90.07 \\ 89.23 \\ 88.46 \end{array} $	90·21 89·37	$89 \cdot 387 \\ 88 \cdot 604$	00 0 N		
$eta \gamma$	5 0N	5	87·84 87·27	$88.60 \\ 87.98 \\ 87.41$	87 · 988	5d?	Ti, Zr.	
α'	00	$\frac{2}{1}$	$\begin{array}{c} 86.55 \\ 86.13 \end{array}$	86·69 86·27	86.691	00N		
α	6 0	1 5 1	$85.87 \ 85.70 \ 85.24$	$egin{array}{c c} 86.01 \\ 85.84 \\ 85.38 \\ \hline \end{array}$	$86.005 \\ 85.861 \\ 85.361$	0000N 00 3	Fe? Co	
eta	5 4	5 5	$84.76 \\ 84.07$	84·90 84·21	$84 \cdot 908 \\ 84 \cdot 225$	1 00		(1).
$\beta^{\alpha,\ a_1}$	5	$egin{array}{c} 4 \\ 3 \end{array}$	$82 \cdot 19 \\ 81 \cdot 04$	82·33 81·18	$\begin{array}{c c} 82 \cdot 340 \\ 81 \cdot 202 \end{array}$	0000		Corrected solar $\lambda = 81 \cdot 170$.
$egin{aligned} a_1 \ \gamma \end{aligned}$	4	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$80.78 \\ 80.22$	80·92 80·36	80·889 80·397	1 3	Sr ? Ti	λ = 01 170.
a_3 a_1	0	$\frac{3}{1}$	$79 \cdot 80 \\ 79 \cdot 43 \\ 79 \cdot 25$	$egin{array}{c c} 79 \cdot 94 & \\ 79 \cdot 57 & \\ 79 \cdot 39 & \\ \end{array}$	$79.961 \\ 79.577$	000	\mathbf{Cr}	
a_{3}	6	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$78.71 \ 78.58$	$78.85 \\ 78.72$	$78 \cdot 824 \\ 78 \cdot 723$	$\begin{bmatrix} 2 \\ 00 \end{bmatrix}$	Fe	
$egin{array}{c} a_1 \ a_3 \ eta \end{array}$	5	$\begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$	$egin{array}{c c} 78 \cdot 18 & \\ 77 \cdot 48 & \\ 77 \cdot 26 & \\ \end{array}$	$egin{array}{c c} 78 \cdot 32 & \\ 77 \cdot 62 & \\ 77 \cdot 40 & \\ \hline \end{array}$	$egin{array}{c c} 78 \cdot 320 \\ 77 \cdot 622 \\ 77 \cdot 408 \\ \end{array}$	$\begin{bmatrix} 00 \\ 3 \\ 00 \end{bmatrix}$	Ti	
$\begin{bmatrix} a_1 \\ a_2, a_3 \end{bmatrix}$		$\begin{bmatrix} 2 \\ 5d ? \end{bmatrix}$	$77 \cdot 04 \\ 76 \cdot 48$	$77 \cdot 18 \mid 76 \cdot 62 \mid$	$77 \cdot 202 \\ 76 \cdot 630$	$\begin{bmatrix} 00 \\ 0N \\ 2 \end{bmatrix}$	Co Fe	
$\begin{bmatrix} \gamma & & \\ a_1 & & \\ a & & \end{bmatrix}$	4	$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$	$egin{array}{c c} 76 \cdot 29 & \\ 76 \cdot 01 & \\ 75 \cdot 62 & \\ \hline \end{array}$	$76 \cdot 43 \\ 76 \cdot 15 \\ 75 \cdot 76$	$egin{array}{c c} 76 \cdot 414 & \\ 76 \cdot 164 & \\ 75 \cdot 768 & \\ \hline \end{array}$	000		(1).
$egin{array}{c} a_2 \ a_3 \ lpha \end{array}$	6	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$	$75.57 \\ 75.33$	$75 \cdot 71 \\ 75 \cdot 47$	$75 \cdot 698 \\ 75 \cdot 478$	1 0N	Ni	Arc includes faint Cu, ,, ,, Ni (3)
$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$	0	3 3 5	$75 \cdot 08 \ 74 \cdot 84 \ 74 \cdot 75$	$75 \cdot 22 \\ 74 \cdot 98 \\ 74 \cdot 80$	$75 \cdot 231 \\ 74 \cdot 981$	000	7	
$egin{array}{c} a_3 \\ a_1 \\ a_2 \end{array}$	0	5 3	$74 \cdot 73 \\ 74 \cdot 23 \\ 74 \cdot 14$	$egin{array}{c c} 74 \cdot 89 & \\ 74 \cdot 37 & \\ 74 \cdot 28 & \\ \end{array}$	$74 \cdot 872 \\ 74 \cdot 358 \\ 74 \cdot 271$	$\begin{bmatrix} 1 \\ 4 \\ 000 \end{bmatrix}$	Zr Ni	Arc includes faint Ni.
$\begin{bmatrix} a_3 \\ a_1, a_2 \end{bmatrix}$	F	3 6	$74.00 \ 73.50 \ 73.34$	$74 \cdot 14 $ $73 \cdot 64$	$74 \cdot 119 \\ 73 \cdot 642$	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$		(1).
$\begin{bmatrix} a_3, \ eta \ a_2 \end{bmatrix}$	5	$\begin{bmatrix} 5 \\ 0 \\ 3 \end{bmatrix}$	$egin{array}{c c} 73 \cdot 34 \ 73 \cdot 12 \ 72 \cdot 95 \ \end{array}$	$egin{array}{c c} 73 \cdot 48 & \\ 73 \cdot 26 & \\ 73 \cdot 09 & \\ \end{array}$	73 · 452	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		Solar line probably double. (1).

Table V.—Catalogue of Ammonia Band Lines, with Solar Comparisons (continued).

		Ammo	onia.			Sun.		
Series.	Inten	sity.	Wave-	length.	λ	Inten-	Origin.	Remarks.
beries.	Flame.	Arc.	I.A.	Rowland.	ROWLAND.	sity.	Origin.	
a_1, a_3 a_2	2	6d ? 4	$3372 \cdot 77 \\ 72 \cdot 46$	$3372 \cdot 91 \\ 72 \cdot 60$	$\begin{vmatrix} 3372 \cdot 901 \\ 72 \cdot 609 \end{vmatrix}$	$_{00\mathbf{N}}^{5}$	Ti, Pd Fe	
a_1, a_4	6	$\frac{6d}{2}$?	$\begin{array}{c} 72 \cdot 19 \\ 72 \cdot 06 \end{array}$	$\begin{array}{c} 72 \cdot 33 \\ 72 \cdot 20 \end{array}$	$\begin{array}{c c} 72 \cdot 314 \\ 72 \cdot 225 \end{array}$	$_{1}^{0}$	Fe	Also series α ?, γ ?
$egin{array}{c} a_2 \ a_1 \end{array}$	1	$_4^5$	$\begin{array}{c c} 71 \cdot 99 \\ 71 \cdot 71 \end{array}$	$72 \cdot 13$ $71 \cdot 85$	$\begin{array}{c} 72\cdot 124 \\ 71\cdot 852 \end{array}$	$^4_{00}$	Ni, —	Arc includes faint Ni.
a_2, a_4		$\frac{3}{4}$	71 · 6 1 71 · 39	71.75	$71.745 \\ 71.535$	000	*	Difficult group in are, which includes a faint
$a_1, a_2 \\ a_2 \\ a_1, a_4 \\ a_1$	1	? 3 4 4	71·34 71·15 71·10 70·97	$71 \cdot 48$ $71 \cdot 29$ $71 \cdot 24$ $71 \cdot 10$	$71 \cdot 296 \ 71 \cdot 246 \ 71 \cdot 110$	00 00 0		J metallic line.
a_1 a_4	$\begin{bmatrix} 6 \\ 1 \end{bmatrix}$	4 4 0	70.81 70.62 70.44	70.95 70.76 70.58	$ \begin{array}{c cccc} 70 \cdot 933 \\ 70 \cdot 770 \\ 70 \cdot 584 \end{array} $	1 $\stackrel{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$	Fe Zr, Mn Ti	
a_4	2 {	$\frac{2}{3}$	$70 \cdot 31$ $70 \cdot 18$ $70 \cdot 02$	70.45 70.32 70.16	70.468 70.330 70.173	2 0N 00	Co	(2). (1).
a_4 a_4	$\begin{bmatrix} 2\\4\\4 \end{bmatrix}$	$egin{array}{c} 4 \ 3 \ 1 \ 3 \end{array}$	69·78 69·38 69·17 69·03	$ \begin{array}{r} 69 \cdot 92 \\ 69 \cdot 52 \\ 69 \cdot 31 \\ 69 \cdot 17 \end{array} $	$ \begin{array}{c c} 69 \cdot 932 \\ 69 \cdot 506 \\ 69 \cdot 190 \end{array} $	0 0 N 0		
a_4 b_1	2	$\begin{array}{c} 3 \\ 1 \\ 2 \end{array}$	68.65 68.53 68.36	68·79 68·67 68·50	68.793 68.680 68.496	00 00 000		(1).
	$ \begin{array}{c c} 0 \\ 2 \end{array} $	$egin{pmatrix} 2 \\ 2d \ ? \\ 1 \end{pmatrix}$	68·18 67·87 67·67	$68 \cdot 32$ $68 \cdot 01$ $67 \cdot 81$	$\begin{bmatrix} 68 \cdot 319 \\ 68 \cdot 029 \\ 67 \cdot 812 \end{bmatrix}$	$\begin{array}{c} 1 \\ 2 \\ 0 \end{array}$	Mn Ti, Ni, Fe	(1).
b_1		$egin{array}{c} 1 \ 2 \ 1 \ 2 \end{array}$	$ \begin{array}{c c} 67 \cdot 49 \\ 67 \cdot 38 \\ 67 \cdot 18 \\ 66 \cdot 47 \end{array} $	$ \begin{array}{c c} 67.63 \\ 67.52 \\ 67.32 \\ 66.61 \end{array} $	$67 \cdot 527 \\ 67 \cdot 297 \\ 66 \cdot 594$	$0000 \\ 1 \\ 000$	Fe ?	
b_1		$\frac{2}{0}$	66·36 65·96	66·50 66·10	66 · 494	000		
$\begin{array}{c} b_1 \\ b_2 \end{array}$	00	$egin{array}{c} 2 \\ 1 \\ 2 \end{array}$	$65 \cdot 46$ $64 \cdot 93$ $64 \cdot 73$	$65 \cdot 60$ $65 \cdot 07$ $64 \cdot 87$	65.581 65.081 64.832	0 0000 00		(1). Corrected solar
b_1	00	4	64.66	64.80	[64 · 786]	00		$\lambda = 64.870.$ Solar line added from Higgs.
b_2	1	3	$64 \cdot 38 \\ 64 \cdot 26$	64·52 64·40	$64 \cdot 535 \\ 64 \cdot 408$	0 N d?	Co	ZZZ COD
b_1	1	5d ?	63.95	64.09	64.055	0		Solar line wide enough to include ammonia.
$\begin{array}{c} b_2 \\ b_1 \end{array}$	0	3 6	$63 \cdot 61 \\ 63 \cdot 32$	$63 \cdot 75 \\ 63 \cdot 46$	63·750 63·442* 63·298	1 0d ! 0000 N	Ni Co	*

^{*} From 3363.4 to 3358.0 the solar lines are tabulated in full.

Table V.—Catalogue of Ammonia Band Lines, with Solar Comparisons (continued).

BAND OF AMMONIA, AND ITS OCCURRENCE IN THE SOLAR SPECTRUM.

-		Sun.		Ammonia.					
Remarks.	Origin,	Inten-	λ			sity.	Inten	Series.	
	Origin,	sity.	ROWLAND.	Rowland.	I.A.	Arc.	Flame.		
	Ço	0 4Nd ?	$3363 \cdot 107$ $62 \cdot 936$ $62 \cdot 782$	3363·11 62·90	$3362 \cdot 97 - 62 \cdot 76$	3 · 6	00 2	$egin{array}{c} b_2 \ b_1 \end{array}$	
		0000	$62 \cdot 727$ $62 \cdot 528$	$62 \cdot 52$	$62 \cdot 38$	2		b_2	
(1).		2d ?	$62 \cdot 402 \ 62 \cdot 275$	$62 \cdot 40$	$62 \cdot 26$	6	3	b_1^2	
	Ti	$\begin{array}{c} 2 \\ 0 \\ 1 \end{array}$	$62.087 \ 61.988 \ 61.906$	61.98	61.84	8	6	b_1 , b_2	
Solar line merge	Co	3Nd?	61.704	61.61	61 · 47	4.		b_1	
dark ground.		0 N	61.568	61.56	61 · 42	4			
vav	Ti	2 8	$61 \cdot 421 \\ 61 \cdot 327 \\ 61 \cdot 341$	61:30	$61 \cdot 16 \\ 61 \cdot 10$	4 .		b_1	
(2).		. 1	$61 \cdot 241 \\ 61 \cdot 141$	$egin{array}{c c} 61 \cdot 24 & 61 \cdot 12 \end{array}$	60.98	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$	4 4		
Corrected solar	Ti	$\begin{array}{c} 1 \\ 0 \end{array}$	$61.055 \\ 60.988$	$\begin{array}{c c}61\cdot04\\60\cdot94\end{array}$	60·80	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$		b_1	
$\lambda = 60.942.$ Dark ground, both		0	60.828	60.82	60.68	3		b_1	
sun and ammon		0	$60.741 \\ 60.631$	$60 \cdot 72 \\ 60 \cdot 62$	$60.58 \\ 60.48$	3 5	3 }	b_1	
,	Cr	1	60.485		20.91	0			
Ni not given by Ex and Haschek.	Ni	2	60 · 444	60.45	60.31	8		b_1	
Dark ground, bot		0	$60 \cdot 345 \\ 60 \cdot 258$	$60 \cdot 33 \\ 60 \cdot 24$	60·19 60·10	3 5	10 {	$b_1, c_1 \\ b_1$	
sun and ammon		2	60.181	60 · 18	60.04	10 <i>d</i> ?		b_1	
} Solar line wide er to includ e amm oni		0 1N	60·066 59·93 6	59.89	59·94 59·75	$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$		$egin{array}{c} c_1 \ c_2 \ ? \end{array}$	
		2	$59 \cdot 823$						
(1).	17. 0	1	59.769	59.77	$59.63 \\ 59.50$	$-\frac{3}{5}$		c_1	
(2).	Fe?	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	$59.636 \\ 59.542$	$59.64 \\ 59.55$	$59 \cdot 41$	3		c_2	
,/-	Co	ī	59 420	$59 \cdot 42$	$59 \cdot 28$	5	4	c_1	
Not Ni in amaza	NI:	2 NT	50.040	$59 \cdot 29 \mid 59 \cdot 22 \mid$	$59.15 \\ 59.08$	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	- }	c_3	
Not Ni in ammonia	Ni	3N 00	$59 \cdot 248 \\ 59 \cdot 144$	59.16	59.08 59.02	$\frac{3}{3}$	Wild Street	c_2	
(1).	77.00	2N	59.035	59.03	58.89	3	7	c_1	
(2).		00	58.929	58.94	58.80	1	3	c_3	
(2).		00	$58.832 \\ 58.771$	$58 \cdot 84 \mid 58 \cdot 79 \mid$	58·70 58·65	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$		c_2	
•	Ti, Cr	4 .	58.649	58.62	58.48	3	۲	c_1	
(2).		00	58.542	58.56	58.42	2	4 {	c_3	
•	Ti	$\frac{3}{0000}$	$58 \cdot 416 \\ 58 \cdot 276$	58.42	58.28	4	U	c_2	

Table V.—Catalogue of Ammonia Band Lines, with Solar Comparisons (continued).

		Ammo	onia.			Sun.		
en e	Inten	sity.	y. Wave-length.		λ	Inten-	0	Remarks.
Series.	Flame.	Arc.	I.A.	ROWLAND.	ROWLAND.	sity.	Origin.	
c1, 8?	5	4	3358.04	3358 · 18	3358·182 58·076*	IN 0000		*
	5	3	$57 \cdot 72$	57.86	$57 \cdot 874$	0		
c_1		. 0	57.56	$57 \cdot 70$	$57 \cdot 703$	0		(1).
-	5	3	$57 \cdot 28$	$57 \cdot 42$	$57 \cdot 412$	2	$Z\mathbf{r}$	
	4	2	56.66	56.80	$56 \cdot 821$	2	Fe	
	2	1	55.18	55 · 32	55:363	4	Fe	
	1		$53 \cdot 91$	54.05	$54 \cdot 057$	000N		
δ	6	2	53.63	53.77	$53 \cdot 768$	00N	Zr	
	0	1	53.10	53.24	$53 \cdot 262$	2		(1).
	1		51.77	$51 \cdot 91$				
€	3	1	50.85	$50 \cdot 99$	$50 \cdot 985$	000		
		0	49.85	$49 \cdot 99$	or post tool too			
δ	10	4	49.55	49.69	$49 \cdot 695$	00		
δ'	0	0	48.68	48.82	48.820	000		
	0	0	$47 \cdot 94$	48.08	48.072	3	Fe	
€	4	2	$47 \cdot 62$	47.76	47.760	00N		(1)
ζ	3	0	46.42	46.56	46.557	0		(1).
		2	$46 \cdot 28$	46.42	46 · 414	00		
δ	- 8	4	45.62	45.76	$45 \cdot 761$	00		
δ΄	0	1	44.86	45.00	45.015	000		
€	5	$\frac{2}{3}$	44:17	44.31	44 315	00		(1)
ζ	4	1	43.21	43.35	43.366	0		(1).
	1	I ;	43.01	43.15	43.156	00	TC) -	-
0	0	1 :	$\frac{42 \cdot 33}{41 \cdot 99}$	42.47	42.442	3	Fe Ti	3
$\frac{\delta}{\delta'}$.	8	4	41.82	41.96	41.967	4	11	The state of the s
	00	. a	41.15	41.29	41.300	0000N $00N$		WE UP TO A STATE OF THE STATE O
ξ	6	$\frac{2}{3}$	$40.68 \\ 39.86$	40·82 40·00	40·823 40·011	1		(1).
ζ	6 0	, ?	39.30	39.44	39.438	00 0N		Possibly obscured in arby "ghost."
	0	0	$38 \cdot 80$	$38 \cdot 94$	$38 \cdot 944$	0000		
δ	8	4	38.10	38.24	$38 \cdot 247$	0		
		1	$37 \cdot 67$	37 · 81	$37 \cdot 803$	3	Fe	
ϵ	6	4	$-37 \cdot 19$	$37 \cdot 33$	$37 \cdot 319$	1N	Co	
		1	$36 \cdot 75$	36.89				Possibly obscured in su by Mg 36.820 (8N).
ζ	6	2	$36 \cdot 49$	36.63	36.635	00N		
	7	4	$34 \cdot 47$	34.61	34.613	0		
ϵ	7	4	33.72	33.86	33.854	0	C	
	_	2	33.40	33.54	33.526	$\frac{2}{2}$	Co	
ζ	7	3	33.11	33.25	$33 \cdot 250$	0		The state of the s
0	,	1 :	33.05	33.19	21.050	1 % T		
δ	7	5	30.50	31.04	31.056	1N	O 0	
	h-7	1	30.59	30.73	30.745	000	Sn ?	
€ ⊱	7	5	30.27	30.41	30.438	1		
ζ	6	4	29.75	29.89	$\frac{29 \cdot 902}{39 \cdot 241}$	00	Co	
		1	$28 \cdot 19$	28:33	28:341	00	U0	

^{*} From 3363.4 to 3358.0 the solar lines are tabulated in full.

BAND OF AMMONIA, AND ITS OCCURRENCE IN THE SOLAR SPECTRUM.

Table V.—Catalogue of Ammonia Band Lines, with Solar Comparisons (continued).

		Ammo	onia.		Sun.				
G	Intensity.		Wave-length.		λ	Inten-	0::	Remarks.	
Series.	Flame.	Arc.	I.A.	Rowland.	Rowland.	sity.	Origin.		
δ	6	5	3327 · 40	3327 · 54	3327 · 533	2	Ni		
€	5	4	26.87	$27 \cdot 01$	$26 \cdot 998$	3	Ti		
ζ	5	4	26.41	26.55	26.553	0			
	5	5	23.98	24 · 12	24 · 129	0			
€	5	4	23.53	23.67	23.669	0			
ζ δ	5	4	23 12	23.26	$23 \cdot 256$	00	M. 13.		
	4	4	20.63	20.77	20.783	$rac{2}{7}$	Mn, Fe	Observed in the Ni	
€ { 8	4	3 ? 3	$ \begin{array}{c c} 20.25 \\ 19.89 \end{array} $	$\begin{array}{c c} 20 \cdot 39 \\ 20 \cdot 03 \end{array}$	20.391	0	Ni	Obscured in arc by Ni.	
)	$\begin{vmatrix} 4 \\ 3 \end{vmatrix}$	$\frac{3}{3}$	19.89	17.51	$20.032 \\ 17.514$	0			
	3	$\frac{3}{3}$	17.04	17.18	17.174	00			
€ \$ 8	3	$\frac{3}{3}$	16.73	16.87	16.871	00			
8	3	$\frac{3}{3}$	14.18	14.32	14.334	0	$_{ m Mn}$		
	3	3	13.90	14.04	14.042	00N	1,211	·	
ξ δ	3	$\ddot{3}$	13.63	13.77	$13 \cdot 774$	1		(1).	
Š	3	3	11.09	$11 \cdot 23$	11.238	ō		(-).	
	3	3	10.85	10.99	10.996	0			
ζ	3	3	10.62	10.76	10.777	1N		(1).	
δ	3 {	3	08.10	08 · 24	$08 \cdot 239$	0N			
• \$60 • \$60	1 LI	3 ?	07.90	$08 \cdot 04$	$08 \cdot 035$	00N		Obscured in arc by Cu.	
ζ	2	2	07.70	$07 \cdot 84$	$07 \cdot 845$	4	Fe	-	
δ	$ 2\{ $	2	$05 \cdot 21$	$05 \cdot 35$	$05 \cdot 354$	000			
ϵ	I LI	2	05.05	$05 \cdot 19$	$05 \cdot 194$	000			
ζ	2	$\frac{2}{2}$	04.87	05.01	$05 \cdot 001$	00	Mn		
	$2\left\{ \left \right \right.$	2	02:42	02.56	00.440	0000 N		Obscured in sun by Na 02:510 (6).	
€ ء	,	2_1	02:30	02:44	02:443	0000N			
ξ δ		$\frac{1}{2}$	$02 \cdot 15 \\ 3299 \cdot 76$	$\begin{vmatrix} 02 \cdot 29 \\ 3299 \cdot 90 \end{vmatrix}$	$02 \cdot 289 \ 3299 \cdot 905$	0000 N 0		(1)	
6		$\overset{\scriptscriptstyle{2}}{2}$	99.67	99.81	99.804	0		(1). (1).	
ξ δ	"]	ĩ	99.54	99.68	99.652	$\overrightarrow{\text{oN}}d$?	$\mathbf{M}\mathbf{n}$	(1).	
δ	}	î	$97 \cdot 23$	$97 \cdot 37$	97.381	0	11211	(1).	
ε	2	ī	$97 \cdot 16$	$97 \cdot 30$	$97 \cdot 301$	ŏ	Co	(-).	
€ } 8	-	ō	$97 \cdot 05$	$97 \cdot 19$	$97 \cdot 194$	$\tilde{\mathbf{oN}}$		(1).	
Š	ا أ	1	94.82		١ ا			∫Ĵust resolvable in 4th	
€	1	1	$94 \cdot 79$	$94 \cdot 93$	94.949	00N		order plate.	
ζ		0	94.70	$94 \cdot 84$	94.849	000	_	-	
ε ξ δ, ε δ, ε ζ δ, ε	1 {	1	92.58	92.72	$92 \cdot 728$	4	\mathbf{Fe}		
ζ	[]	0	92.51	92.65	92.636	0		(1). (1).	
δ, ε	0 {	1	90.50	90.64	90.642	0N		(1).	
2	0	$0 \\ 1$	$90.45 \\ 88.57$	90.59	90.602	00	${ m Ti}$		
ο, ε δ, ε	U	0	86.84	$88.71 \\ 86.98$	$88.705 \\ 86.980$	$^2_{ m ON}$	11	(1).	
٠, ٤		0	00 04	00 90	00 000	014		(+).	

372 PROF. A. FOWLER AND MR. C. C. L. GREGORY ON BAND OF AMMONIA, ETC.

Description of Plate.

- Fig. I. is enlarged from a photograph of the spectrum of the flame of ammonia fed with oxygen; taken with a small quartz spectrograph. The bright band on the left is due to water vapour.
- Fig. II. is from a photograph taken with a quartz spectrograph of moderate dispersion, the source being a flame of imperfectly dried cyanogen burning in an atmosphere of oxygen. The bright band on the left is due to water vapour.
- Fig. III. shows the band of the ammonia flame as photographed with the large quartz spectrograph.
- Fig. IV. is from a photograph taken in the 3rd order of a 10-foot concave grating. The short lines at the edges are those of the iron comparisons. The middle spectrum is that of the copper arc in ammonia.
- Fig. V. (a) is the solar spectrum, from a photograph by Higgs; (b) is the copper arc in ammonia, as fig. IV. It is shown as a negative to facilitate comparison with the solar absorption lines. Metallic lines are marked by double dots, except in the case of iron comparison lines, which are short lines along the middle of the spectrum. (There is a slight difference of scale of the two The scale is that of ROWLAND. enlargements, but several lines common to the two spectra are indicated.)

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

TRANSACTIONS SOCIETY

THE AMMONIA BAND, H₂O H₂O a ::